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ABSTRACT

MULTIOBJECTIVE RELIABILITY-BASED OPTIMIZATION OF PRESTRESSED
CONCRETE BEAMS

By

Mohammed Qahtan Taha

Under the supervision of

Dr. Samer Barakat

A comprehensive study on the optimal deterministic and prohabilistic design of
prestressed concrete beams (PCB) is presented. The Feasible Direction Method is used
to obtain a set of optimal geometrical dimensions of asymmetrical I-beam cross section,
and amount of prestressing steel. The bonded tendon type is considered in application of
post-tensioned beam with a single duct of parabolic shape. Many parameters were
analyzed including the effect of span length considering different loading cases. The
performance constraints in the deterministic approach, according to the AC! 318/95
Building Code provisions, are based upon the flexural stresses, the prestressing losses,
the ultimate shear strength, the ultimate moment capacity of the section with respect to
cracking moment and factored loads, the crack width, the immediate deflection and the
long term deflection. A practical and efficient reliability based-structural optimization
(RBSQ) approach is conducted to design PCB. The solution is obtained using an
optimization-based program linked to a reliabifity analysis prograrm. In this program, the
first order second moment reliability method for the aforementioned components and
systems is employed. Material properties, loading and models used to predict structural
behavior at  all stages, are treated as random variables. An approach of single cbjective

RBSO (SORBO) of PCB to minimize the overall cost of the beam in terms of concrete,
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prestressing steel, mild steel and formwork is given by a one-point solution. This solution
does not provide enough information for decision making in the design process. Hence,
the multiobjective reliability-based optimization (MORBQO) of PCB is shown to be
practically feasible and more beneficial than SORBO. An algorithm to handle uncertainty
in MORBO problems considering the e-constraint method is used and the Pareto
optimum solutions are obtained. Secondary and tertiary competing objective functions
have been simultaneously applied for both minimizing the overall cost and the long term
deflection, as well as maximizing; the system reliability index, the reliability of flexural
strength capacity, and the reliability of tensile stress at service stage. The probabilistic
designs are performed using two types of target reliability index. As a result of MCRBO
solutions, the design charts and their interaction curves are developed. These charts can

be used by the designers in selecting the best-desired solutions.
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ABSTRACT

MULTIOBJECTIVE RELIABILITY-BASED OPTIMIZATION OF PRESTRESSED
CONCRETE BEAMS

By

Mohammed Qahtan Taha

Under the supervision of

Dr. Samer Barakat

A comprehensive study on the optimal deterministic and prohabilistic design of
prestressed concrete beams (PCB) is presented. The Feasible Direction Method is used
to obtain a set of optimal geometrical dimensions of asymmetrical I-beam cross section,
and amount of prestressing steel. The bonded tendon type is considered in application of
post-tensioned beam with a single duct of parabolic shape. Many parameters were
analyzed including the effect of span length considering different loading cases. The
performance constraints in the deterministic approach, according to the AC! 318/95
Building Code provisions, are based upon the flexural stresses, the prestressing losses,
the ultimate shear strength, the ultimate moment capacity of the section with respect to
cracking moment and factored loads, the crack width, the immediate deflection and the
long term deflection. A practical and efficient reliability based-structural optimization
(RBSQ) approach is conducted to design PCB. The solution is obtained using an
optimization-based program linked to a reliabifity analysis prograrm. In this program, the
first order second moment reliability method for the aforementioned components and
systems is employed. Material properties, loading and models used to predict structural
behavior at  all stages, are treated as random variables. An approach of single cbjective

RBSO (SORBO) of PCB to minimize the overall cost of the beam in terms of concrete,
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prestressing steel, mild steel and formwork is given by a one-point solution. This solution
does not provide enough information for decision making in the design process. Hence,
the multiobjective reliability-based optimization (MORBQO) of PCB is shown to be
practically feasible and more beneficial than SORBO. An algorithm to handle uncertainty
in MORBO problems considering the e-constraint method is used and the Pareto
optimum solutions are obtained. Secondary and tertiary competing objective functions
have been simultaneously applied for both minimizing the overall cost and the long term
deflection, as well as maximizing; the system reliability index, the reliability of flexural
strength capacity, and the reliability of tensile stress at service stage. The probabilistic
designs are performed using two types of target reliability index. As a result of MCRBO
solutions, the design charts and their interaction curves are developed. These charts can

be used by the designers in selecting the best-desired solutions.
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Chapter I

INTRODUCTION

1.1 General

It is a well-known fact that the main goal of the structural designer is to
achieve a safe, serviceable, durable, feasible, reliable, economical and
aesthetically pleasing structure. Optimization techniques with reliability concepts
are usually used for satisfying these necessary criteria.

Since the following concepts play a crucial role in this work, it is felt
necessary to define them separately. To start with, concrete is ess‘entially a
material recognized as strong and ductile in compression, weak and brittle in
tension (its strength in tension is much lower than in compression), and hence its
response to external loads is improved by applying a precompre;,sion.

Prestressed Concrete (PC) is basically concrete in which internal stresses
of suitable magnitude and distribution are introduced so that the stresses resulting
from external loads are counteracted to a desired degree. In general, PC was
adopted for the design of beams up to certain span length.

The prestressing of concrete naturally involves application of a compressive
loading, prior to applying the anticipated service loads so that tensile stresses that
otherwise would occur are reduced or eliminated. In prestressed concrete
construction high-strength reinforcement is used. The initial tensioning of the

reinforcement precompresses the surrounding concrete, giving it the ability to

resist higher loads prior to cracking (Nilson, 1987).



In prestressed concrete many design variables and parameters come into
play to improve the overall design. Hence, the designer can get very larger spans
with small concrete sections and lighter structures by making certain
improvements at the criteria under the umbrella of both serviceability and ultimate
limit state categories. These criteria within the serviceability limit state category
include flexural stresses in top and bottom fibers of the concrete section, cracking
width, camber, deflections, whereas those within the ultimate limit state category
include ultimate shear, bending and cracking strengths.

Structural engineers make attractive and important uses of optimization
techniques and search for optimally designed structures. Different techniques of
optimization were utilized using mathematical algorithms such as linear, integer,
geometric and nonlinear programming. The algorithms for optimization process
consist of two main steps, the first; analyzes the structure to find its response for
carrying applied loads, whereas the second, redistributes the material.
Furthermore, in these problems, there are sets of constraints that control the
design under code limitations. Consequently, an optimization problem could be
characterized as one in which the best solution is sought without violating its pre-
fixed constraints.

In structural problems, a solution to the single objective optimal design
problem is considered unique and will not provide enough information for decision
making in the design process. There often exist several criteria (usually conflicting
insofar as independently they would lead to different optima) to be optimized in
feasible set. Multiobjective (multicriterion or vector) optimization, where a vector-
valued objective functions had to be examined, is the adequate approach to this

specific topic. The optimum solution of this multiobjective optimization is now given



by a set of solutions. This set is solved using the concept of Pareto optimality,
which explains the optimal trade-off curves among several objective functions in
graphical form.

The multiobjective optimization, therefore; offers an alternative approach to
the single-objective optimization that will be based on secondary, tertiary or
higher-order objectives. This alternative is preferable because it simultaneously
considers all competing design objectives and results in merit values that can not
be further improved without impairing some of the objectives. Later on, a decision-
maker will often be faced with a choice of many alternative solutions optimizing the
objective (Rao et. al., 1992).

It is now widely recognized that structural problems are nondeterministic
because of the unpredictability of loads and strengths of actual structures.
Therefore, problems of structural optimization must be solved in the face of
uncertainty and, as a consequence, a reliability-based design philosophy should
be adopted to provide finally a practical and efficient approach to the optimization
of prgstressed concrete beams if two or more objectives are considered.

The designed structure must have sufficient reliability against ultimate and
serviceability limit states specified by the Codes. Structural failure, defined as the
inability of structure to sustain the loads for which it was designed, is considered to
be the ultimate limit states. Therefore, the reliability-based design process consists
of proportioning the structure to satisfy requirements at ultimate limit state and
then to modify the design in order to satisfy the requirements at serviceability limit

state.

In this study, dead load and material properties are considered normally

distributed random variables, while the live load variable is assumed to have type-1

L



(Gumble) distribution. Meanwhile, the imperfection in the prediction models used
is taken into account by assuming randem model coefficients for each limit state
function.

This being the case, the design of prestressed concrete asymmetrical I-
shape beam is coded into a program and coupled with reliability-based
optimization programs. The set of requirements defined by the design methods

and the ACI-Code (318-95) are subjected constraints besides other constraints on

the shape or size of the structure.

1.2 Literature Review

Hundreds of researches have been published on optimization of structures
during the past three and a half decades, but only a small portion of them deal
with cost optimization of structures (Sarma, and Adeli, 1998). The great majority of
the structural optimization researches are concerned with minimizing the weight of
the structure. For concrete structures, the objective function is usually minimizing
the cost. Some researchers studied other objectives in optimization of prestressed
concrete structures such as; minimum amounts of prestressing steel, minimum
volume of concrete, maximum girder spacing, minimum super-structure depth,
maximum span-to-depth ratio, maximum feasible span length, minimum super-

structure camber, and others (Sarma and Adeli, 1998).

Cohn, and MacRaw (1984), developed a computerized approach, OSCON
program, to the optimal design of the three types of structural concrete beam,
considering all relevant limit state constraints and other parametric variables.

Prestressing optimization and its implications for designing simply supported



reinforced, pre or posttensioned fully or partially prestressed concrete members
were considered. The problem formulation required nonlinear programming
technique for its solution. The design variables consisted of six geometrical
dimensions of the prismatic concrete section. The objective function was

minimizing the total cost per unit length.

Later on, optimum limit design of continuous concrete beams for two and
three spans {rectangular and I- shape sections) developed by Cohn and Lounis
(1993). The study demonstrated the conflict between desirable plastic
redistribution (at ultimate limit state) and zero or limited cracking (at serviceability
limit state) for fully prestressed concrete structures. Optimization results
suggested that partially PC structures representing the optimal prestressing
degree strikes a good balance between adequate service conditions (stresses,

cracking and deflection) and economy.

Khaleel and Itani (1993), presented a comprehensive study on the
optimization of simply supported partially prestressed concrete girders using
sequential quadratic programming. The design variables were the geometrical
dimensions, the amount of prestressing and non-prestressing steel, and the
spacing between shear reinforcement. The constraints used were based on
flexural stresses, fatigue stresses, crack width, ductility, initial camber, deflection
due to both live loads and dead loads, ultimate moment capacity of the section

with respect to cracking moment and factored loads and ultimate shear strength.
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